190 research outputs found

    Magnetic Single-Electron Transistor as a Tunable Model System for Kondo-Destroying Quantum Criticality

    Full text link
    Single-electron transistors attached to ferromagnetic leads can undergo a continuous quantum phase transition as their gate voltage is tuned. The corresponding quantum critical point separates a Fermi liquid phase from a non-Fermi liquid one. Here, we expound on the physical idea proposed earlier. The key physics is the critical destruction of the Kondo effect, which underlies a new class of quantum criticality that has been argued to apply to heavy fermion metals. Its manifestation in the transport properties is studied through an effective Bose-Fermi Kondo model; the bosonic bath, corresponding to the spin waves of the ferromagnetic leads, describes a particular type of sub-Ohmic dissipation. We also present results for general forms of sub-Ohmic dissipative bath, and consider in some detail the case with critical paramagons replacing spin waves. Finally, we discuss some delicate aspects in the theoretical treatment of the effect of a local magnetic field, particularly in connection with the frequently employed Non-Crossing Approximation.Comment: 4 pages, 3 figures, to appear in the proceedings of SCES 07 (the international conference on strongly correlated electron systems 2007

    Capacitive Object Ranging and Material Type Classifying Sensor

    Full text link

    Simultaneous Material Type Classification And Mapping Data Acquisition Using A Laser Range Finder

    Full text link
    This paper presents a method for single sensor simultaneous derivation of three-dimensional mapping data and material type data for use in an autonomous sandblasting system. A Hokuyo laser range finder s firmware has been modified so that it returns intensity data. A range error and return intensity analyzing algorithm allows the material type of the sensed object to be determined from a set of known materials. Empirical results have demonstrated the system s ability to classify material type (under alignment and orientation constraints) from a set of known materials common to sandblasting environments (wood, concrete, metals with different finishes and cloth/fabric) and to successfully classify objects both when static and when fitted to an in-motion 6-DOF anthropomorphic robotic arm

    Anderson impurity model at finite Coulomb interaction U: generalized Non-crossing Approximation

    Full text link
    We present an extension of the non-crossing approximation (NCA), which is widely used to calculate properties of Anderson impurity models in the limit of infinite Coulomb repulsion U→∞U\to\infty, to the case of finite UU. A self-consistent conserving pseudo-particle representation is derived by symmetrizing the usual NCA diagrams with respect to empty and doubly occupied local states. This requires an infinite summation of skeleton diagrams in the generating functional thus defining the ``Symmetrized finite-U NCA'' (SUNCA). We show that within SUNCA the low energy scale TKT_K (Kondo temperature) is correctly obtained, in contrast to other simpler approximations discussed in the literature.Comment: 7 pages, 6 figure

    Identification of a Kinase Profile that Predicts Chromosome Damage Induced by Small Molecule Kinase Inhibitors

    Get PDF
    Kinases are heavily pursued pharmaceutical targets because of their mechanistic role in many diseases. Small molecule kinase inhibitors (SMKIs) are a compound class that includes marketed drugs and compounds in various stages of drug development. While effective, many SMKIs have been associated with toxicity including chromosomal damage. Screening for kinase-mediated toxicity as early as possible is crucial, as is a better understanding of how off-target kinase inhibition may give rise to chromosomal damage. To that end, we employed a competitive binding assay and an analytical method to predict the toxicity of SMKIs. Specifically, we developed a model based on the binding affinity of SMKIs to a panel of kinases to predict whether a compound tests positive for chromosome damage. As training data, we used the binding affinity of 113 SMKIs against a representative subset of all kinases (290 kinases), yielding a 113×290 data matrix. Additionally, these 113 SMKIs were tested for genotoxicity in an in vitro micronucleus test (MNT). Among a variety of models from our analytical toolbox, we selected using cross-validation a combination of feature selection and pattern recognition techniques: Kolmogorov-Smirnov/T-test hybrid as a univariate filter, followed by Random Forests for feature selection and Support Vector Machines (SVM) for pattern recognition. Feature selection identified 21 kinases predictive of MNT. Using the corresponding binding affinities, the SVM could accurately predict MNT results with 85% accuracy (68% sensitivity, 91% specificity). This indicates that kinase inhibition profiles are predictive of SMKI genotoxicity. While in vitro testing is required for regulatory review, our analysis identified a fast and cost-efficient method for screening out compounds earlier in drug development. Equally important, by identifying a panel of kinases predictive of genotoxicity, we provide medicinal chemists a set of kinases to avoid when designing compounds, thereby providing a basis for rational drug design away from genotoxicity

    Unifying view of mechanical and functional hotspots across class A GPCRs

    Get PDF
    G protein-coupled receptors (GPCRs) are the largest superfamily of signaling proteins. Their activation process is accompanied by conformational changes that have not yet been fully uncovered. Here, we carry out a novel comparative analysis of internal structural fluctuations across a variety of receptors from class A GPCRs, which currently has the richest structural coverage. We infer the local mechanical couplings underpinning the receptors' functional dynamics and finally identify those amino acids whose virtual deletion causes a significant softening of the mechanical network. The relevance of these amino acids is demonstrated by their overlap with those known to be crucial for GPCR function, based on static structural criteria. The differences with the latter set allow us to identify those sites whose functional role is more clearly detected by considering dynamical and mechanical properties. Of these sites with a genuine mechanical/dynamical character, the top ranking is amino acid 7x52, a previously unexplored, and experimentally verifiable key site for GPCR conformational response to ligand binding. \ua9 2017 Ponzoni et al

    Effect of concrete slats, three mat types and out-wintering pads on performance and welfare of finishing beef steers

    Get PDF
    peer-reviewedBackground The objective was to investigate the effect of placing mats on concrete slatted floors on performance, behaviour, hoof condition, dirt scores, physiological and immunological variables of beef steers, and to compare responses with animals on out-wintering pads. Continental crossbred beef steers [n = 360; mean (±SD) initial live weight 539 kg (42.2)] were blocked by breed and live weight and randomly assigned to one of five treatments; (1) Concrete slats alone, (2) Mat 1 (Natural Rubber structure) (Durapak Rubber Products), (3) Mat 2 (Natural rubber structure) (EasyFix), (4) Mat 3 (modified ethylene vinyl acetate (EVA) foam structure) and (5) Out-wintering pads (OWP’s). Results Animals on the OWPs had a greater (P  0.05) as the other treatments. Animals on the OWPs had reduced lying percentage time compared with all the other treatments. Dry matter (DM) intake was greater for animals on the OWPs compared with all the other treatments. Carcass weight, kill out proportion, carcass fat score, carcass composition score, FCR and physiological responses were similar (P > 0.05) among treatments. No incidence of laminitis was observed among treatments. The number of hoof lesions was greater on all mat types (P < 0.05) compared with concrete slats and OWP treatments. Dirt scores were greater (P < 0.05) for animals on OWPs when measured on days 42, 84, 105, 126 and 150 compared with animals on slats. Conclusions Under the conditions adopted for the present study, there was no evidence to suggest that animals housed on bare concrete slats were disadvantaged in respect of animal welfare compared with animals housed on other floor types. It is concluded that the welfare of steers was not adversely affected by slats compared with different mat types or OWPs

    On violating one’s own privacy: N-adic utterances and inadvertent disclosures in online venues

    Get PDF
    Purpose: To understand the phenomena of people revealing regrettable information on the Internet, we examine who people think they’re addressing, and what they say, in the process of interacting with those not physically or temporally co-present. Design/methodology/approach: We conduct qualitative analyses of interviews with student bloggers and observations of five years’ worth of their blog posts, drawing on linguists’ concepts of indexical ground and deictics. Based on analyses of how bloggers reference their shared indexical ground and how they use deictics, we expose bloggers’ evolving awareness of their audiences, and the relationship between this awareness and their disclosures. Findings: Over time, writers and their regular audience, or “chorus,” reciprocally reveal personal information. However, since not all audience members reveal themselves in this venue, writers’ disclosures are available to those observers they are not aware of. Thus, their over-disclosure is tied to what we call the “n-adic” organization of online interaction. Specifically, and as can be seen in their linguistic cues, N-adic utterances are directed towards a non-unified audience whose invisibility makes the discloser unable to find out the exact number of participants or the time they enter or exit the interaction. Research implications: Attention to linguistic cues, such as deictics, is a compelling way to identify the shifting reference groups of ethnographic subjects interacting with physically or temporally distant others. Originality/value: We describe the social organization of interaction with undetectable others. N-adic interactions likely also happen in other on- and offline venues in which participants are obscured but can contribute anonymously.postprin

    Neutrophil Extracellular Traps in Inflammatory Bowel Disease: Pathogenic Mechanisms and Clinical Translation

    Get PDF
    The Inflammatory Bowel Diseases (IBD), Ulcerative Colitis (UC) and Crohn’s Disease (CD) are characterised by chronic non-resolving gut mucosal inflammation involving innate and adaptive immune responses. Neutrophils, usually regarded as first responders in inflammation, are a key presence in the gut mucosal inflammatory milieu in IBD. Here, we review the role of neutrophil extracellular trap (NET) formation as a potential effector disease mechanism. NETs are extracellular webs of chromatin, microbicidal proteins and oxidative enzymes that are released by neutrophils to contain pathogens. NETs contribute to the pathogenesis of several immune-mediated diseases such as systemic lupus erythematosus and rheumatoid arthritis; and recently, as a major tissue damaging process involved in the host response to severe acute respiratory syndrome coronavirus 2 infection. NETs are pertinent as a defence mechanism at the gut mucosal interphase exposed to high levels of bacteria, viruses and fungi. On the other hand, NETs can also potentiate and perpetuate gut inflammation. In this review, we discuss the broad protective vs. pathogenic roles of NETs, explanatory factors that could lead to an increase in NET formation in IBD and how NETs may contribute to gut inflammation and IBD-related complications. Finally, we summarise therapeutic opportunities to target NETs in IBD
    • 

    corecore